Volume 2 Issue 2 Technical Science Integrated Research | ISSN 3051-3855

Integrating traditional web crawling with declarative XML output

Rashid Turgunbaev
Kokand State University

Abstract: The proliferation of dynamic web content and complex site architectures presents
significant challenges for automated web indexing and search engine optimization. While the Sitemap
XML protocol offers a standardized format for declaring a website s structure, the automated
generation of accurate and comprehensive sitemaps remains a non-trivial computational task. This
article presents a detailed analysis of a novel software artifact, a Sitemap Crawler, which synthesizes
traditional breadth-first web crawling techniques with robust XML generation to produce protocol-
compliant sitemaps. We examine the architectural decisions, data structures, and algorithms
embodied in its Java implementation, focusing on its dual nature as both a graphical user interface
application and a background processing engine. The crawler s innovative use of batched disk I/O
for memory management, its heuristic for polite crawling, and its sophisticated URL filtering
mechanism are critically evaluated. This analysis contributes to the discourse on practical web data
extraction tools by demonstrating a functional model that balances efficiency, robustness, and user
accessibility in the domain of automated sitemap creation.

Keywords: sitemap generation, web crawling algorithm, batched I/O management, xml protocol
compliance, polite crawling, java swing application

Introduction

The structural discovery of web resources is a cornerstone of an open and indexable internet. The
Sitemaps protocol, an open standard adopted by major search engines, allows webmasters to
explicitly list important pages, providing metadata such as update frequency and priority. However,
manual sitemap creation is infeasible for large, evolving websites. Automated generators must
therefore intelligently traverse a site, discerning navigational links from irrelevant ones (e.g., to media
files, external sites, or functional elements), and serialize the results into a valid XML structure. The
presented Sitemap Crawler addresses this need not as a command-line utility but as an accessible
desktop application, embedding complex crawling logic within a responsive Swing GUI. This article
deconstructs its implementation, revealing a design that thoughtfully addresses core challenges in
web crawling: state management, politeness, scalability, and output standardization. The tool does
not parse existing sitemaps but actively constructs them through exploration, representing a proactive
rather than a declarative approach to site mapping.

Architectural Overview

The system is architecturally partitioned into two distinct layers: a presentation layer built with Java
Swing and a core crawling engine. The NewCrawler class extends JFrame, serving as the primary
controller and view. Upon user initiation, it spawns a dedicated thread for the crawling process,
ensuring the GUI remains responsive - a critical design pattern for long-running I/O operations. The
core logic is encapsulated within the inner Scan class, which implements Runnable. This separation
of concerns isolates the inherently blocking network and file operations from the event dispatch
thread of the GUI, preventing application freezing. The crawling engine itself manages three primary
data structures: a Queue<String> (urlQueue) for managing the frontier of unexplored URLs in a
breadth-first manner, a Set<String> (visitedUrls) for global duplicate prevention, and a temporary file
system store for scalability. This hybrid in-memory and on-disk state management is a defining

10 February 2026 3

Volume 2 Issue 2 Technical Science Integrated Research | ISSN 3051-3855

feature of the architecture, enabling the tool to handle websites of varying sizes without succumbing
to memory exhaustion.

The Crawling Algorithm

The crawler implements a classic breadth-first search algorithm over the graph defined by hyperlinks
within a domain. The algorithm begins by seeding the queue with the user-provided baseUrl. The
main loop dequeues a URL, fetches its HTML document using the JSoup library, extracts all anchor
(<a>) tags, and enqueues any novel, valid URLs found. The BFS strategy is well-suited for sitemap
generation as it tends to discover pages in order of their linkage distance from the homepage, often
correlating with structural importance. A significant algorithmic enhancement is the integrated 100-
millisecond delay (Thread.sleep(100)) within the processing loop. This implements a politeness
policy, reducing server load and minimizing the risk of being blocked for aggressive requesting, an
often-overlooked aspect of ethical web crawling.

The isValidUrl method acts as a crucial filter, defining the edge criteria for the traversal graph. It
employs a multi-pronged heuristic to exclude non-essential resources. It enforces scope by requiring
URLs to start with the baseUrl (preventing crawler drift to external sites). It ignores fragment
identifiers (strings following a #). It uses a regular expression to filter out common file extensions for
binaries, media, and documents (e.g., .jpg, .pdf). Furthermore, it explicitly filters out URLSs containing
protocols like mailto:, tel:, and javascript:, and heuristically ignores common feed URLs. This filter
is instrumental in shaping the final sitemap to contain only HTML pages intended for human
consumption, aligning the crawl with the semantic goal of a page sitemap.

Scalability and State Management Through Batched I/O

A central contribution of this design is its approach to memory scalability. For large websites, storing
hundreds of thousands of URLs in a HashSet can strain the Java heap. The Scan class ingeniously
addresses this by introducing a batched flushing mechanism. It maintains a temporary batchUrls set
and a corresponding counter. When the batch size reaches a predefined FLUSH THRESHOLD (100
URLSs), the entire batch is appended to a temporary text file on disk, and the in-memory batch is
cleared. A global allVisitedUTrls set is kept to ensure cross-batch duplicate detection, but this set only
contains the URLSs of the current run; the primary persistent storage becomes the file system.

Upon completion of the crawl, the readUrlsFromTempFile method reconstitutes the complete,
deduplicated set by reading all lines from the temporary file back into the master visitedUrls set. This
design represents a time-space trade-off, exchanging increased disk I/O operations for drastically
reduced memory footprint. It allows the application to theoretically crawl sites of nearly unlimited
size, constrained only by disk space, which is a more abundant resource than RAM in typical desktop
environments. The temporary file is properly cleaned up after sitemap generation, demonstrating
responsible resource management.

XML Generation and Protocol Compliance

The generateSitemap method transitions from data collection to formal declaration. It utilizes the
standard Java Document Object Model (DOM) API to construct a well-formed XML document. It
correctly establishes the root <urlset> element with the mandatory XML namespace
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9”. For each discovered URL, it creates a <url>
element containing child nodes for <loc>, <lastmod>, <priority>, and <changefreq>.

The implementation makes specific semantic choices. The <lastmod> field is populated with the
current timestamp in ISO 8601 format at the moment of generation, a pragmatic, though not perfectly
accurate, approximation. The <priority> field uses a simple heuristic: the base URL receives a priority
of “1.0”, while all others receive “0.5”. The <changefreq> is hard-coded to “weekly”. While these
static assignments are a simplification - advanced crawlers might infer priority from link centrality

10 February 2026 4

Volume 2 Issue 2 Technical Science Integrated Research | ISSN 3051-3855

or change frequency from historical data - they satisfy the protocol’s requirements and provide a
reasonable default structure. The use of a Transformer with explicit output properties ensures the final
sitemap.xml file is human-readable, indented, and UTF-8 encoded.

User Interaction and Error Resilience

The GUI provides a straightforward interface: a text field for the base URL and a “Generate” button.
The application performs basic validation, ensuring the URL uses HTTP/HTTPS and normalizes it
with a trailing slash. The statusArea text area, using a monospaced font, serves as a real-time log,
providing vital feedback on the crawl’s progress, including the current URL being scanned, flush
notifications, and error messages. This transparency is essential for user trust, especially when
operations take considerable time.

Error handling is integrated throughout the core Scan class. Network timeouts and /O exceptions
during page fetching are caught and logged to the status area without halting the entire crawl.
Exceptions during XML parsing or file operations are similarly handled. The try-catch blocks within
the run() method ensure that a failure in one part of the process does not crash the thread but allows
for graceful error reporting and the re-enabling of the generate button. This defensive programming
approach enhances the tool’s robustness for dealing with the unpredictable nature of network
resources.

Comparative Analysis and Discussion

This Sitemap Crawler occupies a distinct niche. Unlike server-side scripts or plugins (e.g., those for
WordPress) that generate sitemaps from a content management system’s database, this tool performs
an external, content-agnostic crawl. This makes it universally applicable to any publicly accessible
website, regardless of its underlying technology. Compared to distributed, high-performance crawlers
like Apache Nutch, it is a single-threaded, desktop-focused tool prioritizing simplicity and correctness
over raw speed and scale.

Its most significant architectural decision - the batched file I/O - distinguishes it from many in-
memory crawlers found in tutorials. This elevates it from a pedagogical example to a potentially
practical tool for larger sites. However, limitations are evident. The crawl is single-threaded and
sequential, making it slow for very large sites. It does not respect the robots.txt exclusion protocol, a
critical component of compliant web crawling. The heuristics in isValidUrl, while effective, are static
and might require modification for non-standard site structures. Furthermore, it cannot execute
JavaScript, rendering it blind to links generated dynamically by client-side scripts, a growing
challenge in the modern web.

Conclusion and Future Work

The analyzed Sitemap Crawler presents a coherent and effective synthesis of classic web crawling
algorithms and XML document production within an accessible desktop application. Its design
demonstrates thoughtful consideration of real-world constraints, notably through its politeness delay,
batched disk I/O for scalability, and comprehensive URL filtering. It serves as a functional blueprint
for understanding the core components of a dedicated sitemap generation tool.

Future iterations of this system could explore several enhancements to increase its power and
compliance. Integrating a robots.txt parser would align it with web standards. Implementing a
configurable thread pool would parallelize HTTP requests, significantly improving performance on
bandwidth-limited crawls. The filtering heuristics could be made user-configurable via the GUI.
Exploring headless browser integration (e.g., via Selenium) would enable the rendering of JavaScript-
dependent content. Finally, incorporating the ability to read and merge with existing sitemap files
would allow for incremental updates rather than full recrawls. Despite these potential advancements,
the current implementation stands as a testament to a viable and instructive approach to automating

10 February 2026 5

Volume 2 Issue 2 Technical Science Integrated Research | ISSN 3051-3855

a key task in webmastery and SEQO, bridging the gap between theoretical graph traversal and practical,
standards-based output generation.

References
1. Newman, M. W., & Landay, J. A. (2000, August). Sitemaps, storyboards, and specifications: A
sketch of web site design practice. In Proceedings of the 3rd conference on Designing interactive
systems: processes, practices, methods, and techniques (pp. 263-274).
2. Manhas, J. (2014). Comparative study of website sitemap feature as design issue in various
websites. [JEM-International Journal of Engineering and Manufacturing (IJEM), 4, 22.
3. Bernard, M. (1999). Sitemap Design: Alphabetical or Categorical?. Usability news, 1(2).
4. Ceci, M., & Lanotte, P. F. (2021). Closed sequential pattern mining for sitemap generation. World
Wide Web, 24(1), 175-203.
5. Khodaparasti, S., & Ahmadzadeh, M. (2011, July). A New Method for Designing a Sitemap. In
International Conference on Human-Computer Interaction (pp. 580-583). Berlin, Heidelberg:
Springer Berlin Heidelberg.
6. Manhas, J. (2015, March). Design and development of automated tool to study sitemap as design
issue in Websites. In 2015 2nd International Conference on Computing for Sustainable Global
Development (INDIACom) (pp. 514-518). IEEE.
7. Pilgrim, C. (2007). Trends in sitemap designs: a taxonomy and survey.

10 February 2026 6

